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ABSTRACT 

An interpolation formula based on Fourier method for the numerical solution of a 
Fredholm integral equation related to conformal mapping of a simply connected 

region onto a unit disc is presented. The integral equation involves the Neumann 
kernel. The numerical results obtained from the interpolation formula based on 
Fourier method are then compared with the numerical results obtained from the 
interpolation formula based on Nyström’s method. Numerical comparison shows that 
the interpolation formula based on Nyström’s method gives better performance. 
Numerical implementations on some test regions are presented. 

 

 

INTRODUCTION 

It has been established that Fourier method is equivalent to 

Nyström’s method for the numerical solution of Fredholm integral equation 

(Berrut and Trummer, 1987). This implies that both methods will produce 
the same approximation to the solution of a Fredholm integral equation at 

the collocation points. However, Berrut and Trummer (1987) did not give 

any numerical examples to support their findings. Furthermore, no 
numerical comparison has been given for the performance of the 

interpolation formulas based on Fourier method and Nyström’s method. The 

aim of this paper is to provide relevant numerical examples to fill up this gap 

through numerical conformal mapping. 
 

Conformal mapping has been a familiar tool of science and 

engineering for generations. The practical limitation has always been that 
only for certain special regions are exact conformal mapping known, while 

for the rest, they must be computed numerically. Thus several methods have 

been developed for numerical conformal mapping. The mapping of a simply 

connected region onto a unit disc is known as a Riemann mapping and the 
mapping function is known as Riemann mapping function. The most 

commonly used method to compute the Riemann mapping function is 

derived from integral equations involving the boundary correspondence 
function that relates the two regions’ boundaries pointwise. Typically the 
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boundaries are discretized at n points, so that the integral equation reduces to 

an algebraic system. 
 

A method to compute the Riemann mapping function via the 

Bergman kernel is presented in Razali et al. (1997) which expresses the 
Bergman kernel as the solution of a second kind integral equation involving 

the Neumann kernel. In Razali et al. (1997), the integral equation via the 

Bergman kernel has been solved using the interpolation formula based on 

Nyström’s method with trapezoidal rule. In this paper, we shall use 
interpolation formula based on Fourier method to solve the integral equation 

and compare numerically the performance of these two types of 

interpolation formulas. The numerical solution of the integral equation will 
then be used to approximate the boundary correspondence function for 

several test regions. The exact boundary correspondence functions for 

several test regions will also be calculated and compared with the 

approximate results. 
 

The organization of this paper is as follows. Section 2 contains a brief 

review of the integral equation for the Bergman kernel. In Section 3 we 
show how to treat the integral equation numerically using Fourier method. In 

Section 4, we make some numerical comparisons between interpolation 

formulas based on Nyström’s and Fourier methods using some test regions 
and draw some conclusion. 

 

 

INTEGRAL EQUATION FOR THE BERGMAN KERNEL 

Let Ω  be a simply connected region in the complex plane whose 

boundary Γ  is assumed to be analytic 2C  Jordan curve. Suppose ( )z z t=  is 

the parametric representation of Γ  with 
 

( )
( )
( )

z t
T z

z t

′
=

′
 

 
denotes the unit tangent in the direction of increasing parameters at the point 
z. 

Let a ∈Ω  and let R be the Riemann map of Ω  whose boundary is 

Γ , with the usual normalization 

 

( ) ( )0,    0,    .R a R a a′= > ∈Ω  



Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method 

 

Malaysian Journal of Mathematical Sciences 

 
85 

Due to Γ  being analytic, R can be extended to a function that is 

analytic on Ω = Ω ∪ Γ . A classical relationship between the Riemann map 
and the Bergman kernel is given by 

 

( ) ( )
( )
( )

,1
,    ,

i ,

B z a
R z T z z

B z a
= ∈Γ  

where ( ),B z a  is the Bergman kernel which is analytic on Ω  (Razali et al., 

1997). In Razali et al. (1997), it is shown that the function 

( ) ( ) ( )ˆ , ,B z a T z B z a= is the unique continuous solution to the integral 

equation 
 

( ) ( ) ( )
( )

( )
2

1ˆ ˆ, , , ,    ,
T z

B z a N z w B w a dw z
z aπΓ

+ = − ∈Γ
−

∫             (1) 

where 

( )

( )

( ) ( )

( )
3

1
Im ,             , ,

,
Im1

,    .
2

T z
z w w z

z w

N z w
z t z t

z w
z t

π

π

  
∈Γ ≠  

− 
=   ′′ ′   = ∈Γ

′

            (2) 

The real kernel N is the familiar Neumann kernel which arises 

frequently in the integral equations of potential theory and conformal 
mapping (Henrici, 1986). Since Γ  is analytic, the Neumann kernel N is 

certainly continuous at all points ( ),z w ∈Γ × Γ . 

 

Assume the parametric representation of Γ  is ( )z z t= , 0 ,s t β≤ ≤ . 

Let ( )w z s= . Consequently, integral equation (1) and Neumann kernel (2) 

can be expressed as 

( ) ( ) ( ) ( )
0

, ,t v t s s ds t
β

φ λ φ ψ− =∫                          (3) 

where 1λ = − , and for 0 ,s t β≤ ≤ , 

( ) ( ) ( )( )ˆ , ,t z t B z t aφ ′=                             (4) 
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( ) ( ) ( )( )ˆ , ,s z s B z s aφ ′=                         (5) 

( )
( )

( )( )
2

1
,

z t
t

z t a

ψ
π

′
= −

−
                                   (6) 

( )

( )
( ) ( )

( )
( )

1
Im ,    if ,

,
1

Im ,           if .
2

z t
t s

z t z s
v t s

z t
t s

z t

π

π

 ′ 
≠  

−   
= 

′′ 
=  ′  

                       (7) 

Note that β  is finite, v is a given function of two variables, ψ  is a 

given function, and φ  is to be determined. An important fact is that 1λ = −  

is not an eigenvalue of v. The homogenous equation corresponding to 
equation (3) thus has the trivial solution. By the Fredholm alternative 

(Kreyszig, 1978), the non-homogeneous equation has exactly one 

continuous solution φ  for any continuous function ψ . 

 

 

NUMERICAL IMPLEMENTATION USING FOURIER 

METHOD 

If we set 2β π= , equation (3) becomes 

 

( ) ( ) ( ) ( )
2

0
,t v t s s ds t

π

φ φ ψ+ =∫      (8) 

 

Note that the functions φ , ψ  and v are 2π -periodic. 

 
To implement Fourier method, we choose N equidistant collocation 

points 2j js t j Nπ= = , and interpolate the kernel v and the inhomogeneity 

ψ  by trigonometric polynomials, i.e., 

( ) i i
,

M M
nt ms

nm

n M m M

v t s a e e

′

′=− =−

= ∑ ∑�                            (9) 
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and 

( ) iˆ
M

nt
n

n M

t d eψ
′=−

= ∑             (10) 

where 

, if  is odd, 2 1;

1,  if  is even, 2 .

M N N M
M

M N N M

= +
′ = 

− =
 

The coefficients 
nm

a  and 
n

d  are the elements of the discrete Fourier 

transforms given by (Berrut and Trummer, 1987) 
 

( )
1

2
, 0

1
,

N
jn km

nm j k

j k

a v t s w w
N

−
− −

=

= ∑            (11) 

( )
1

0

1
N

jn
n j

j

d t w
N

ψ
−

−

=

= ∑                         (12) 

where ( )exp 2 iw Nπ= , ( ),
jk j k

v v t s=  and ( )j j
tψ ψ=  are the 

interpolated values. We seek a solution at the collocation points of the form 

 

( ) ( )iˆ j

M
nt

j n j

n M

t b e tφ
′=−

= ∑                        (13) 

with unknown coefficient 
n

b . Replacing the functions φ , ψ , and v in 

equation (8) by their respective approximations φ̂ , ψ̂ , and v� , we obtain 

 

2
i i i ik i

0
.

M M M M M
nt nt ms s nt

n nm k n

n M n M m M k M n M

b e a e e b e ds d e
π ′

′ ′ ′ ′=− =− =− =− =−

   
+ =   

   
∑ ∑ ∑ ∑ ∑∫  

or 

 

2
i i i ik i

0
.

M M M M M
nt nt ms s nt

n nm k n

n M n M m M k M n M

b e a b e e e ds d e
π′

′ ′ ′ ′=− =− =− =− =−

+ =∑ ∑ ∑ ∑ ∑∫            (14) 
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Observe that equation (14) can be simplified by using the 

orthogonality relations for the periodic complex exponentials. These 
orthogonality relations have the following property (Kammler, 2000): 

 

2 i 2 i

0

,   if 
   , 0, 1, 2,....

0,    otherwise.

p
kx p lx p

p k l
e e dx k l

π π−
=

= = ± ±


∫  

Applying the above orthogonality relations with 2p π= , equation 

(14) becomes 
 

i i i
2 .

M M M M
nt nt nt

n nm m n

n M n M m M n M

b e a b e d eπ
′

−

′ ′ ′=− =− =− =−

+ =∑ ∑ ∑ ∑  

On multiplying both sides by ikte−  and then integrate each term from 

0 to 2π , we get 

 

2 2 2
i i i i i i

0 0 0
2 .

M M M M
nt kt nt kt nt kt

n nm m n

n M n M m M n M

b e e dt a b e e dt d e e dt
π π π

π
′

− − −
−

′ ′ ′=− =− =− =−

+ =∑ ∑ ∑ ∑∫ ∫ ∫
 

Applying the orthogonality properties, we obtain 

 

( ) ( ) ( )2 2 2 2 ,
M

k km m k

m M

b a b dπ π π π
′

−

=−

+ =∑  ,.. ..,k M M′= −  

which implies 

2 ,
M

n nm m n

m M

b a b dπ
′

−

=−

+ =∑           ,..., .n M M′= −                          (15) 

 

Hence, equation (15) is a system of linear equations for the 
n

b . 

 

Since v and ψ  are known functions, equations (11) and (12) can be 

used readily to compute the coefficients 
nm

a  and 
n

d . Substitute these values 

into the system (15), we can then solve the values for 
n

b . Finally, substitute 

n
b  into equation (13) will give us the approximate solution for equation (8). 

 



Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method 

 

Malaysian Journal of Mathematical Sciences 

 
89 

Equation (15) can be rewritten as an N by N system 

 

( )+ =I A b d ,            (16) 

 

where I is the identity matrix, A is a matrix defined by 2
nm

aπ , { }n
b=b  and 

{ }n
d=d , for ,...,n M M′= − , ,...,m M M ′= . Note that the coefficient 

matrix ( )+I A , b  and d  are complex. Once the discretized solutions 

( )ˆ
j

tφ  are known at the collocation points, equation (13) provides an 

interpolation formula for φ  based on Fourier method: 

 

� ( ) i

'

.
M

nt

n

n M

t b eφ
=−

= ∑            (17) 

 
Another appealing procedure for solving equation (8) numerically is 

using the Nyström’s method with the trapezoidal rule. Choosing N 

equidistant collocation points 2jt j Nπ=  and the trapezoidal rule for 

Nyström’s method to discretize equation (8), we obtain (Razali et al., 1997) 

 

( ) ( ) ( ) ( )
1

0

2
, ,

N

j j k k j

k

t v t t t t
N

π
φ φ ψ

−

=

+ =∑� �  0 1.j N≤ ≤ −           (18) 

 

Defining the matrix Q by ( )2 ,jk j kQ v t t Nπ= , and � ( )j jx tφ= , 

( )j j
y tψ= � , equation (18) can be rewritten as an N by N system 

 

( ) .+ =I Q x y             (19) 

 
Since equation (8) has a unique solution, then for a wide class of 

quadrature formula, the system (19) also has a unique solution, as long as N 
is sufficiently large (Atkinson, 1986). Similarly, once the discretized 

solutions � ( )jtφ  are known at the collocation points, the interpolation 

formula based on Nyström’s method is given by 
 

� ( ) ( ) ( ) � ( )
1

0

2
, .

N

j j

j

t t v t t t
N

π
φ ψ φ

−

=

= − ∑           (20) 
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Suppose ( )tθ  is the boundary correspondence function to a 

representation ( )z z t= , 0 2t π≤ ≤ , of Γ . Then 

 

( )( ) ( )i t
R z t e

θ
= ,           (21) 

 
where R is the Riemann mapping function. The boundary correspondence 
function can be computed (without integration) by the formula (Razali et al., 

1997) 

( ) ( )( )arg i .t tθ φ= −            (22) 

 

 

COMPUTATION ON SEVERAL TEST REGIONS 

In this section the numerical scheme discussed in Section 3 is applied 

to several test regions with the normalization ( )0 0R = , ( )0 0R′ > . We have 

used the MATHEMATICA 5.0 to carry out the entire numerical procedure. 

We list the sup-norm error ( ) ( )Pt tθ θ
∞

−  where ( )tθ  is the exact 

boundary correspondence function for the test regions, and ( )P
tθ  is the 

approximation obtained by means of equation (22) using P equally spaced 

interpolation points in the interval [ ]0,2π , most of which are not the 

original collocation points. In all our experiments, we have chosen 36P = .  

 

These allow exact comparisons with the numerical results obtained 
from interpolation formula based on Nyström’s method given in Razali et al. 

(1997). 

 

Example 1: Ellipse ( ) ( )( )0 1,  axis ratio 1 1ε ε ε≤ < = + − . 

( ) i i ,t tz t e eε −= +  

( )
( )

( )
2

1

1
2 sin 2 .

1

k k

k
k

t t kt
k

ε
θ

ε

∞

=

−
= +

+
∑  
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TABLE 1: Error norm ( ) ( )Pt tθ θ
∞

−  for ellipse 

 

Axis ratio 
N 

1.2 1.5 2.0 3.0 5 

4 5.3(-01) - - - - 

8 9.9(-02) - - - - 

16 1.6(-03) 5.5(-02) - - - 

32 1.7(-07) 1.1(-04) 1.0(-02) - - 

64 2.7(-15) 7.4(-10) 4.8(-06) 1.4(-02) - 

128 - 1.3(-15) 2.9(-13) 6.4(-07) - 

256 - - 4.9(-15) 1.2(-13) 3.6(-07) 

512 - - - - 5.5(-11) 

 
 

Example 2: Inverted Ellipse ( )0 1p< ≤ . 

 

( ) ( ) ( )2 2 i
1 1 cos ,

t
z t p t e= − −  

TABLE 2: Error norm ( ) ( )Pt tθ θ
∞

−  for inverted ellipse 

 

Values of p 
N 

0.8 0.5 0.2 

4 3.4(-01) - - 

8 5.0(-02) 6.1(-01) - 

16 8.2(-04) 8.7(-02) - 

32 1.6(-07) 1.2(-03) 9.8(-01) 

64 6.2(-15) 2.9(-07) 4.2(-02) 

128 - 1.2(-14) 8.0(-05) 

 

 

Example 3: Oval of Cassini ( )1,0 1z zα α α− + = ≤ ≤ . 

( ) ( )
1

22 4 2 i
cos 2 1 sin 2 ,

t
z t t t eα α= + −  

( ) ( )( )
1

arg ,
2

t t w tθ = −  

 

( ) 4 2 2
1 sin 2 i sin 2w t t tα α= − + . 
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TABLE 3: Error norm ( ) ( )Pt tθ θ
∞

−  for oval of Cassini 

 

Values of α  
N 

0.2 0.5 0.8 0.9 0.99 0.999 

4 5.9(-02) 3.7(-01) - - - - 

8 5.1(-04) 2.4(-02) - - - - 

16 1.2(-07) 2.3(-04) 2.5(-02) 1.5(-01) - - 

32 1.2(-14) 3.0(-08) 1.5(-04) 2.9(-03) - - 

64 8.9(-16) 1.8(-15) 4.1(-08) 1.3(-05) - - 

128 - - 2.7(-15) 2.2(-10) 1.7(-03) - 

256 - - 1.8(-15) 1.8(-15) 8.6(-07) - 

512 - - - - 2.0(-12) 2.1(-04) 

1024 - - - - 4.0(-13) 5.3(-08) 

 

Example 4: Epitrochoid (“Apple”) ( )0 1α≤ ≤ . 

( ) i 2i ,
2

t tz t e e
α

= +  

( ) .t tθ =  

 

TABLE 4: Error norm ( ) ( )Pt tθ θ
∞

−  for epitrochoid 

 

Values of α  
N 

0.2 0.3 0.4 0.6 0.8 0.9 

4 4.5(-05) 3.9(-04) 1.9(-03) 2.4(-02) 6.5(-01) - 

8 1.0(-08) 4.8(-07) 7.8(-06) 4.8(-04) 2.2(-02) - 

16 8.9(-16) 5.7(-13) 1.5(-10) 4.0(-07) 3.1(-04) 1.6(-02) 

32 - 8.9(-16) 8.9(-16) 5.8(-13) 5.6(-07) 5.3(-04) 

64 - - - 8.9(-16) 8.0(-13) 1.9(-07) 

128 - - - - 8.9(-16) 1.6(-13) 

 

 

Even though Berrut and Trummer (1987) has established the 
equivalence of the methods of Fourier and Nyström for solving Fredholm 

integral equation of the second kind; our numerical results have shown that 

the interpolation formula based on Nyström’s method in Razali et al. (1997) 
gives better accuracy compared with the interpolation formula based on 

Fourier method. These numerical experiments suggest that one should prefer 

the interpolation formula based on Nyström’s method in order to obtain 

approximations of high accuracy for numerical conformal mapping of 
interpolation points on the boundary. 
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